Standalone 1A Linear Lithium Battery Charger

With Thermal Regulation

CE3211 Series

■ INTRODUCTION:

The CE3211 is a complete constant-current/ constant-voltage linear charger for single cell lithium rechargeable battery. No external sense resistor is needed, and no blocking diode is required due to the internal P-MOSFET architecture. Furthermore, the CE3211 is specifically designed to work within USB power specifications. Its low external component count makes the CE3211 ideally suited for portable applications.

Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge current can be programmed externally With a single resistor. The CE3211 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached. When the input supply (wall adapter or USB supply) is removed, the CE3211 automatically enters a low power sleep mode, dropping the battery drain current to less than $2\mu A$. The CE3211 can be put into shutdown mode, reducing the supply current to $50\mu A$.

Other features include battery pack temperature monitor, undervoltage lockout, automatic recharge and two status pins to indicate charging and charge termination.

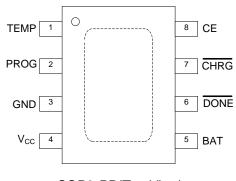
The CE3211 is available in thermally enhanced 8-pin SOP package.

■ FEATURES:

- Charges Single Cell Lithium Battery Directly from USB Port or AC Adapter
- Input Voltage Range From 4.5V to 6.5V
- No External MOSFET, Sense Resistor or Blocking Diode Required
- Preset 4.20V/4.35V Charge Voltage
- Continuous Programmable Charge Current Up to 1A
- Precharge Conditioning for Reviving Deeply Discharged Cells and Minimizing Heat Dissipation During Initial Stage of Charge
- Constant-Current/Constant-Voltage/Constant

 Temp Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- Charge Termination: CE3211A, C/10 CE3211B, C/4
- Automatic Recharge
- Battery Temperature Sensing
- Charge state pairs of output, no battery and fault status display
- Charge Current Monitor Output for Gas Gauging
- Automatic Low Power Sleep Mode When Input Supply Voltage is Removed
- Soft-Start Limits Inrush Current
- Chip Enable Input

■ APPLICATIONS:


- Cellular phones, PDAs
- Portable Media Players
- Digital Still Cameras

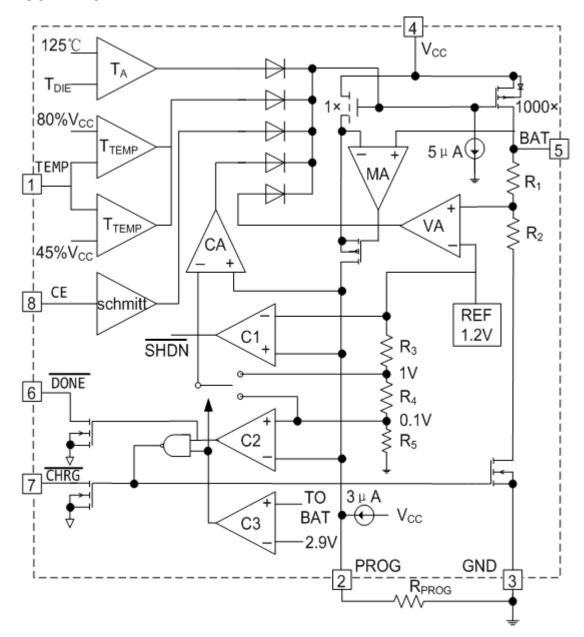
- Bluetooth & GPS Applications
- Mobile Internet Device
- Charging Docks and Cradles

■ ORDER INFORMATION

Device No.	Battery Float Voltage	Charge Termination	Package	Packaging
CE3211A420ES	4.20V	C/10	SOP8-PP	3000 parts per reel
CE3211A435ES	4.35V	C/10	SOP8-PP	3000 parts per reel
CE3211B420ES	4.20V	C/4	SOP8-PP	3000 parts per reel
CE3211B435ES	4.35V	C/4	SOP8-PP	3000 parts per reel

■ PIN CONFIGURATION

SOP8-PP(Top View)


Table 1. Pin Description

PIN NO.	PIN NAME	FUNCTION
		Battery temperature detection input. Connecting TEMP pin to NTC
		thermistor's sensor output in Lithium ion battery pack. If the TEMP pin's
		voltage is less than 45% or greater than 80% of the input voltage V _{CC} , this
	TEMP	means the battery temperature is too high or too low, charging is
1	TEMP	suspended. If the TEMP pin's voltage level is between 45% and 80% of
		the input voltage V _{CC} , battery fault state is released, and charging will
		resume. If the TEMP pin direct access GND, battery temperature
		detection canceled, the other charged functioning properly.
		Constant Charge Current Setting and Charge Current Monitor Pin.
		The charge current is set by connecting a 1% accuracy metal film resistor
		R _{PROG} from this pin to GND. When charging in precharge mode, the
2	PROG	PROG pin voltage is regulated to 0.1V. When charging in constant-current
		mode, the PROG pin voltage is regulated to 1V.In all modes during
		charging, the voltage on PROG pin can be used to measure the charge
		current as the following formula: I _{BAT} =(V _{PROG} /R _{PROG}) X 1000
3	GND	Ground Terminal.
	V _{cc}	Positive Input Supply Voltage. V _{CC} is the power supply to the internal
		circuit. V _{CC} can range from 4.5V to 6.5V and should be bypassed with at
4		least a 4.7μF capacitor. When V _{CC} drops to within 80mv of the BAT pin
		voltage, CE3211 enters low power sleep mode, dropping BAT pin's
		current to less than 2μA.
		Charger Power Stage Current Output and Battery Voltage Sense
		Input. BAT pin provides charge current to the battery and regulates the
	BAT	final float voltage. An internal precision resistor divider from this pin sets
5		the float voltage which is disconnected in shutdown mode. Connect the
		positive terminal of the battery to BAT pin. Bypass BAT to GND with $10\mu F$
		to 47μF capacitor. BAT pin draws less than 2μA current in chip disable
		mode or in sleep mode.
		Open-Drain Charge termination Status Output. In charge termination
6	DONE	status, DONE is pulled low by an internal switch; Otherwise DONE pin is in
		high impedance state.
		Open Drain Charge Status Output. When the battery is being charged,
7	CHRG	the CHRG pin is pulled low by an internal switch, otherwise CHRG pin is in
		high impedance state.
	CE	Chip Enable Input. A high input will put the device in the normal operating
8		mode. Pulling the CE pin to low level will put the CE3211 into disable
		mode. The CE pin can be driven by TTL or CMOS logic level.
	Thermal	Exposed Paddle (bottom). This pin should be soldered to the PCB
EP	PAD	ground as close as to the device for electrical contact and rated thermal
		performance.

V0.1 3(11)

■ BLOCK DIAGRAM

Future 1 Functional Block Diagram

■ ABSOLUTE MAXIMUM RATINGS(1)

(unless otherwise specified, T_A=25°C)

PARAMETER	SYMBOL	RATINGS	UNITS
Input Supply Voltage ⁽²⁾	V _{CC}	-0.3~10	
TEMP, CE, PROG Pins Voltage ⁽²⁾		-0.3~V _{CC} +0.3	V
BAT Pin Voltage ⁽²⁾		-0.3~8] V
CHRG, DONE Pins Voltage ⁽²⁾		-0.3~10	
BAT Short-Circuit Duration	-	Continuous	-
BAT Pin Output Current (Continuous)	I _{BAT}	1200	mA
Output sink current	I _{CHRG} , I _{DONE}	10	mA
Power dissipation	P _D	1200	mW
Operating Ambient Temperature Range ⁽³⁾	T _A	-40~85	°C
Junction Temperature	TJ	-40~150	°C
Storage Temperature	T _{stg}	-40~125	°C
Lead Temperature (Soldering, 10s)	T _{solder}	260	°C
ESD rating ⁽⁴⁾	HBM JESD22-A114A	4000	V
ESD fatting.	MM JESD22-A115A	200	V

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) The CE3211 are guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.
- (4) ESD testing is performed according to the respective JESD22 JEDEC standard.

The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input voltage range ⁽⁵⁾	V_{CC}	4.5	6.5	٧
BAT Pin Output Current (Continuous)	I _{BAT}		1000 ⁽⁶⁾	mA
Operating junction temperature range	T_J	0	70	°C
Fast-charge current programming resistor ⁽⁷⁾	R _{PROG}	1	10	kΩ

- (5) If V_{CC} is between UVLO and 4.5V, and above the battery voltage, then the IC is active (can deliver some charge to the battery), but the IC will have limited or degraded performance (some functions may not meet data sheet specifications). The battery may be undercharged (V_{FLOAT} less than in the specification), but will not be overcharged (V_{FLOAT} will not exceed specification).
- (6) The thermal regulation feature reduces charge current if the IC's junction temperature reaches 125°C; thus without a good thermal design the maximum programmed charge current may not be reached.
- (7) Use a 1% tolerance metal film resistor for R_{PROG} to avoid issues with the R_{PROG} short test when using the maximum charge current setting.

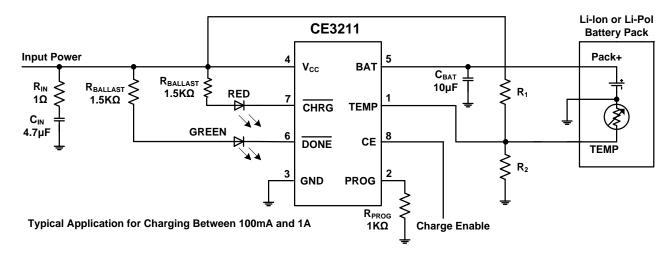
V0.1 5(11)

■ ELECTRICAL CHARACTERISTICS

(V_{CC}= 5V, T_A=25 $^{\circ}$ C, Test Circuit Figure 2, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
VCC Under voltage Lockout Threshold	V_{UVL}	V _{CC} from Low to High		3.9		V	
VCC Under voltage Lockout Hysteresis	ΔV_{UVL}			150		mV	
		Charge Mode, R _{PROG} =10K		150	500		
Input Supply Current	lcc	Standby Mode (Charge Terminated)		50	100	- μΑ	
		Shutdown Mode: R _{PROG} Not Connected, V _{CC} <v<sub>BAT, or V_{CC}<v<sub>UVL</v<sub></v<sub>		50	100		
CE "High" Level Voltage	V _{CEH}		1.5		V _{CC}	V	
CE "Low" Level Voltage	V _{CEL}				0.4	V	
Trickle Charge Threshold	V_{TRIKL}	R _{PROG} =10K, V _{BAT} Rising		2.9		V	
Trickle Charge Hysteresis	ΔV_{TRIKL}	R _{PROG} =10K		100		mV	
Trioldo Chargo Curront		R _{PROG} =1K, For CE3211A	90	100	110	mA	
Trickle Charge Current	I _{TRIKL}	R _{PROG} =1K, For CE3211B	225	250	275	mA	
	I _{BAT}	R _{PROG} =1K, Current Mode(V _{BAT} =4.0V)	900	1000	1100	- mA	
		R _{PROG} =2K, Current Mode(V _{BAT} =4.0V)	450	500	550		
BAT Pin Current		Standby Mode, V _{BAT} =V _{FLOAT}	0	-2.5	-6.0		
		Shutdown Mode (R _{PROG} Not Connected)		±1	±2	μА	
		Sleep Mode, V _{CC} =0V		-1	-2		
PROG Pin Voltage	V_{PROG}	R _{PROG} =1K, Current Mode	0.9	1.0	1.1	V	
PROG Pin Pull-Up Current	I _{PROG}			3		μΑ	
Regulated Output	V _{FLOAT}	0°C ≤ T _A ≤ 85°C,	4.158	4.200	4.250	V	
(Float) Voltage		I _{BAT} =20mA, R _{PROG} =10K	4.300	4.350	4.400	V	
C/10 Termination	I _{TERM}	R _{PROG} =1K, For CE3211A		0.1		mA/mA	
Current Threshold		R _{PROG} =1K, For CE3211B		0.25		mA/mA	
Termination Comparator Filter Time	t _{TERM}	I _{BAT} Falling Below I _{TERM}	0.8	1.8	4.0	mS	
Recharge Battery Threshold	$\triangle V_{RECHG}$	V _{FLOAT} —V _{RECHG}		150		mV	
Recharge Comparator Filter Time	t _{recharge}	V _{BAT} High to Low	0.8	1.8	4.0	mS	

CHIPOWER TECHNOLOGY


V0.1 6(11)

■ ELECTRICAL CHARACTERISTICS(continued)

(V_{CC} = 5V, T_A =25 $^{\circ}$ C, Test Circuit Figure 2, unless otherwise specified)

V _{CC} – V _{BAT} Lockout	A _{MSD}	V _{CC} from Low to High		100		mV
Threshold		V _{CC} from High to Low		80		mV
CHRG Pin Voltage	V _{CHRG}	I _{CHRG} =5mA		0.3	0.6	V
DONE Pin Voltage	V _{DONE}	I _{DONE} =5 mA		0.3	0.6	V
TEMP High Shift				80	82	
Voltage Level				00	02	0/\/
TEMP Low Shift			43	45		%V _{cc}
Voltage Level			43	45		
Soft-Start Time	t _{SS}	I _{BAT} =0 to I _{BAT} =1000V/R _{PROG}		20		μS
Power FET "ON" Resistance	D	1 1000mA		400		0
(Between V _{CC} and BAT)	R_{ON}	I _{BAT} =1000mA		400		mΩ
Junction Temperature in	т			125		°C
Constant Temperature Mode	$T_{J(REG)}$			123		J

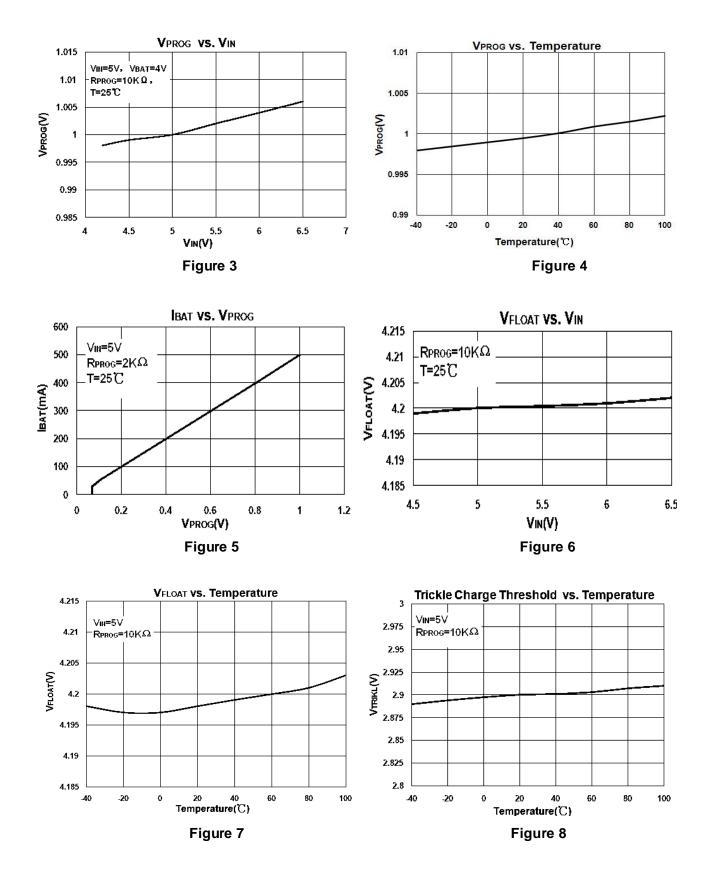
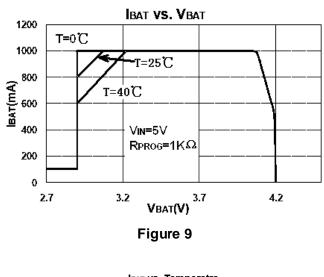
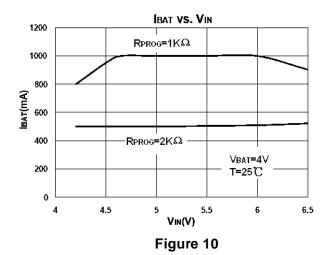
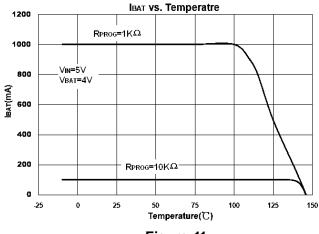

■ TYPICAL APPLICATION CIRCUIT

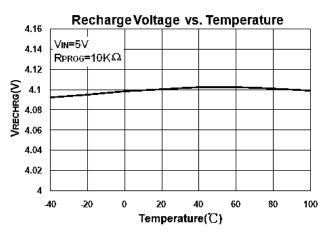
Figure 2 Standard Application Circuit


CHIPOWER


■ TYPICAL PERFORMANCE CHARACTERISTICS



■ TYPICAL PERFORMANCE CHARACTERISTICS(continued)



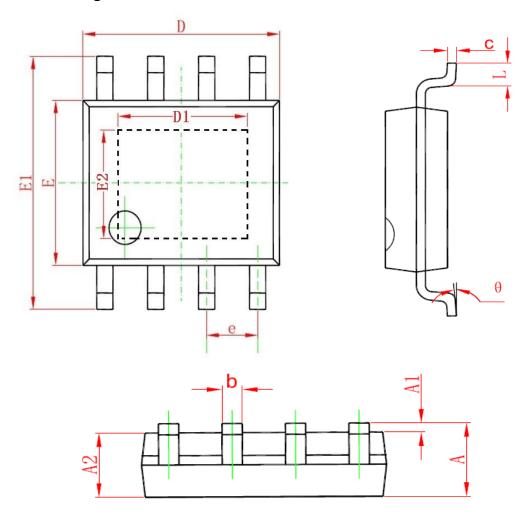

Figure 11

Figure 12

■ PACKAGING INFORMATION

SOP8-PP Package Outline Dimensions

Symbol	Dimensions	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0. 250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
D1	3.100	3.500	0.122	0.137		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
E2	2.200	2.600	0.086	0.102		
е	1.270(BSC)		0.050(BSC)			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

CHIPOWER TECHNOLOGY

© Nanjing Chipower Electronics Inc.

Chipower cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Chipower product. No circuit patent license, copyrights or other intellectual property rights are implied. Chipower reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.